Module Anchored Network Inference: A Sequential Module-Based Approach to Novel Gene Network Construction from Genomic Expression Data on Human Disease Mechanism
نویسندگان
چکیده
Different computational approaches have been examined and compared for inferring network relationships from time-series genomic data on human disease mechanisms under the recent Dialogue on Reverse Engineering Assessment and Methods (DREAM) challenge. Many of these approaches infer all possible relationships among all candidate genes, often resulting in extremely crowded candidate network relationships with many more False Positives than True Positives. To overcome this limitation, we introduce a novel approach, Module Anchored Network Inference (MANI), that constructs networks by analyzing sequentially small adjacent building blocks (modules). Using MANI, we inferred a 7-gene adipogenesis network based on time-series gene expression data during adipocyte differentiation. MANI was also applied to infer two 10-gene networks based on time-course perturbation datasets from DREAM3 and DREAM4 challenges. MANI well inferred and distinguished serial, parallel, and time-dependent gene interactions and network cascades in these applications showing a superior performance to other in silico network inference techniques for discovering and reconstructing gene network relationships.
منابع مشابه
Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملI-34: Interactorme of Human Embryo Implan Implantation:Pathways,Networks
Background: A prerequisite for successful embryo implantation is adequate preparation of receptive endometrium and the establishment and maintenance of a viable embryo. The success of implantation further relies upon a two-way dialogue between the embryo and uterus. However, molecular bases of these preimplantation and implantation processes in humans are not well known. Materials and Methods: ...
متن کاملLearning differential module networks across multiple experimental conditions
Module network inference is a statistical method to reconstruct gene regulatory networks, which uses probabilistic graphical models to learn modules of coregulated genes and their upstream regulatory programs from genome-wide gene expression and other omics data. Here we review the basic theory of module network inference, present protocols for common gene regulatory network reconstruction scen...
متن کاملModule Network Inference from a Cancer Gene Expression Data Set Identifies MicroRNA Regulated Modules
BACKGROUND MicroRNAs (miRNAs) are small RNAs that recognize and regulate mRNA target genes. Multiple lines of evidence indicate that they are key regulators of numerous critical functions in development and disease, including cancer. However, defining the place and function of miRNAs in complex regulatory networks is not straightforward. Systems approaches, like the inference of a module networ...
متن کاملModularized learning of genetic interaction networks from biological annotations and mRNA expression data
MOTIVATION Inferring the genetic interaction mechanism using Bayesian networks has recently drawn increasing attention due to its well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. RESULTS We propose a novel method to infer genetic networks by allevi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017